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Abstract—Artifact Evaluation (AE) is essential for ensuring the
transparency and reliability of research, closing the gap between
exploratory work and real-world deployment is particularly
important in cybersecurity, particularly in IoT and CPSs, where
large-scale, heterogeneous, and privacy-sensitive data meet safety-
critical actuation. Yet, manual reproducibility checks are time-
consuming and do not scale with growing submission volumes.
In this work, we demonstrate that Large Language Models
(LLMs) can provide powerful support for AE tasks: (i) text-based
reproducibility rating, (ii) autonomous sandboxed execution
environment preparation, and (iii) assessment of methodological
pitfalls. Our reproducibility-assessment toolkit yields an accuracy
of over 72% and autonomously sets up execution environments
for 28% of runnable cybersecurity artifacts. Our automated
pitfall assessment detects seven prevalent pitfalls with high
accuracy (F1 > 92%). Hence, the toolkit significantly reduces
reviewer effort and, when integrated into established AE processes,
could incentivize authors to submit higher-quality and more
reproducible artifacts. IoT, CPS, and cybersecurity conferences
and workshops may integrate the toolkit into their peer-review
processes to support reviewers’ decisions on awarding artifact
badges, improving the overall sustainability of the process.

Index Terms—artificial intelligence; artifact badges; sustain-
ability; large language models

I. INTRODUCTION

The rapid evolution of cyber threats poses a significant
challenge for maintaining resilience across many networked
domains, including Internet of Things (IoT) and Cyber-
Physical System (CPS) deployments, industrial control systems,
connected vehicles, and smart cities. Recent reports by the
World Economic Forum [1] and the European Union Agency
for Cybersecurity [2] demonstrate that adversaries not only
refine established attack vectors but also exploit emerging
technologies, particularly Artificial Intelligence (Al), to evade
traditional defenses. In response, the volume and complexity
of security research have grown rapidly [3]. Yet a critical
gap persists between proof-of-concept prototypes for research
evaluation and solutions that are mature and robust enough for
real-world deployment [3]. This gap undermines confidence
in published results and obstructs the translation of academic
advances into practical solutions.

To foster trust and accelerate the technological transfer,
the academic community increasingly adopts reproducibility
badges and performs Artifact Evaluation (AE) within the
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peer-review process [3]-[5]. These processes require authors
to submit code, data, and instructions, which independent
reviewers use to verify claimed results. However, AE is labor-
intensive, depends on volunteers with specialized expertise,
and struggles to keep pace with the rising submission rate in
cybersecurity conferences and workshops [3].

Large Language Models (LLMs) have demonstrated remark-
able natural language understanding, code synthesis, and knowl-
edge extraction capabilities. In cybersecurity contexts, LLMs
have been applied to intrusion and anomaly detection [6], secure
coding assistance [7], and automated penetration testing [8].
Simultaneously, some researchers are looking into improving
conventional peer review with LLMs [9]-[15]. In this paper,
we explore a new dimension of their utility: supporting and
automating AE for cybersecurity research. In light of the
growing number of submissions at cybersecurity venues, we
aim to provide automated support for reviewers of scientific
contributions to improve the scalability of AE. We introduce an
LLM-driven toolkit that analyzes paper texts and accompanying
artifacts to (i) extract reproducibility indicators, (ii) detect
potential inconsistencies between claims and submitted artifacts,
and (iii) identify common pitfalls in experimental design and
evaluation. By embedding these capabilities into the peer-
review workflow, we aim to improve both the scalability and
consistency of the AE process.

Contributions. We propose a three-step LLM-driven toolkit
to partially automate reproducibility assessments:

» RATE: Our LLM-based method that conceptualizes re-
producibility via concept vectors extracted from the model’s
hidden states achieves a recall of almost 95%, allowing the
automatic discarding of non-reproducible submissions.

» PREPARE: Our LLM-agent framework automatically sets
up and runs submitted artifacts in sandboxed environments,
preparing nearly 30% of manually reproducible submissions
and offering supporting hints for all others.

» ASSESS: By repurposing the concept of the RATE stage,
we reliably identify many design and evaluation pitfalls in
security contributions, with an accuracy of >90%.

» Integrated pipeline: A combination of these stages into a
unified AE workflow, which balances computational cost with
assessment accuracy, correctly classifies more than 72% of the
papers in our dataset regarding their reproducibility.

Open Science. We have published our code on GitHub [16].
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Organization. The remainder of this paper is structured
as follows. Section II provides foundations and introduces
recent works on reproducibility and relevant Al techniques,
particularly focusing on cybersecurity. Section III details our
three-stage LLM-driven pipeline. Section IV describes our
implementation and empirical evaluation on a curated dataset
of hundreds of security research papers. Section V discusses
findings, lessons learned, and directions for future research
before we conclude in Section VI.

II. BACKGROUND AND RELATED WORK

AE at security conferences has become vital for ensuring
the transparency and reliability of research, fostering a col-
laborative environment among researchers and experts. Cyber-
security presents unique challenges for AE, often involving
rapidly evolving threats, adversarial settings, and complex
interactions. Manual AE struggles to scale with growing
submission volumes, complex software-hardware stacks, and
deeper methodological flaws. Advancements in Al, particularly
concerning LLMs, offer promising solutions to automate
and enhance certain tasks in this field. In this section, we
review current AE practices and their scalability challenges
(Section II-A), common pitfalls in Al-driven cybersecurity
research (Section II-B), and emerging Al-based automation
techniques targeted toward Al and cybersecurity (Section II-C).

A. Artifact Evaluation at Security Conferences

Many top-tier cybersecurity conferences have introduced
(currently non-mandatory) AE into their peer-review process.
AE requires authors to submit the code, datasets, and doc-
umentation (typically including a Readme with setup and
execution instructions) for independent reviewers to verify
computational reproducibility. Consequently, the reviewers can
award reproducibility badges if the code is available, runnable,
or provides the claimed results [3], [17].

Several papers point out the importance of artifacts and
their evaluation in computer science [18]-[26], and for cy-
bersecurity in particular [27]-[29]. This process promotes
transparency, encourages best practices in experiment reporting,
and accelerates the adoption of the research code in the
community and potentially in production environments [3].
Despite numerous attempts to formalize the requirements for
experiment reporting and implementation description [18], [30],
[31], many researchers emphasize various challenges with
reproducing the results [3], [19], [24], [32], [33].

Despite these benefits, AE often demands extensive manual
effort and expertise, especially given the growing number of
submissions to cybersecurity conferences [3] and conferences
in general [34]. Reviewers must resolve complex dependencies
and sometimes accommodate specialized hardware require-
ments [3]. Double-blind reviewing intensifies these challenges
when anonymization forces the removal of identifying parts of
the original code or documentation [32].

Further analyses reinforce these difficulties: Liu et al. [19] ex-
amine 2196 papers and 1487 corresponding artifacts submitted
between 2017 and 2022 to software engineering venues and find

no significant improvement in overall artifact quality, noting
in particular that the provided Readme files often lack clear
instructions and examples. Olszewski et al. [3] systematically
inspect 744 Al-focused submissions at top security conferences
and find that only 298 include artifacts. Out of the available
artifacts, only 57% provide setup instructions, and not all of
these instructions lead to the successful execution [3].

Complementing the aforementioned study, we focus on
exploring how LLMs can reduce the human workload of AE
by providing automated support for key steps and comparing
our results against this manually established benchmark.

Issue: Conventional AE processes no longer scale with rising
submission rates and the diversity in utilized software and
hardware stacks.

B. Common Pitfalls in Cybersecurity Research

A rigorous review of a research paper should not only
reproduce results but also critically examine the underlying
methodology for evaluation and design flaws, complementing
AE. Arp et al. [35] identify several recurring pitfalls that
undermine the scientific validity of cybersecurity submissions.
For example, Sampling Bias or Base Rate Fallacy may lead
to overfitting on imbalanced data or inflated detection metrics
due to unrealistically high attack rates in the evaluation
data [27], [35], [36]. Lab-only evaluations restrict experi-
ments to synthetic environments, failing to capture real-world
operational networks’ diversity and adaptive strategies [35].
Conventional AE, which focuses primarily on repeating an
experiment by rerunning code, often misses these deeper, more
foundational issues. However, they remain relevant from the
artifact contribution to the community.

In this work, we thus examine how LLMs can be used to
detect textual indicators of these flaws and how to integrate
the detection into a (semi-)automated AE workflow.

Issue: Detecting methodological flaws in a study is vital to
determine its true contribution; however, these flaws are often
hard to detect as part of standard reproducibility checks.

C. Al-Induced Automation Improvements

LLMs have demonstrated strong code understanding, genera-
tion, and document analysis capabilities [37]. In cybersecurity,
they are already used for vulnerability detection [38], flagging
anomalies or intrusions [6], and for guiding fuzzing campaigns
and penetration tests [8]. Parallel efforts apply LLMs to peer
review: Numerous authors [9]-[15], [39] introduce various
techniques to support peer-review processes at academic
conferences with LLMs. While their work provides a foundation
for future research on automated academic peer-review systems,
they note that some challenges such as susceptibility to adver-
sarial inputs or biases must be resolved before the tools can
be widely deployed. Regarding reproducibility, Bhaskar [40]
introduces an LLM-based tool to identify reproducibility
indicators in Al-related papers and their artifacts, achieving
better agreement with human judgments when compared to
keyword-based approaches.
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Figure 1. The three pipeline stages require different inputs, and each stage
utilizes an LLM. Further, they can be used in combination as desired. Any
available results can then be fed into the AE (COMPLEMENT stage).

Despite these advances, a comprehensive automation of
AE, including execution environment provisioning, subsequent
execution, and detection of methodological pitfalls, remains
an open challenge. When complemented with an LLM, such a
system can substantially reduce AE experts’ manual workload
and improve the consistency and reliability of the AE process
in cybersecurity research.

Our intuition is that an LLM-driven toolkit that integrates
text-based reproducibility screening, automated setup and
execution of artifacts, and the detection of common pitfalls
may be marketable given the recent advances in Al. Such a
system can substantially reduce AE experts’ manual workload
and improve the consistency and reliability of the AE process
in cybersecurity research.

Issue: The utility of Al for assessing the reproducibility of
proposed concepts remains underexplored.

III. AN LLM-DRIVEN PIPELINE TO AUTOMATE PARTS OF
ARTIFACT REPRODUCIBILITY ASSESSMENTS

Having the aforementioned issues in mind and employing
recent Al developments, we propose an LLM-driven toolkit
that provides automated support for three crucial stages of
AE: text-based reproducibility rating (RATE, cf. Section III-B),
autonomous execution environment preparation (PREPARE, cf.
Section III-C), and methodological-pitfall assessment (ASSESS,
cf. Section III-D). Before introducing the design details of the
individual steps, we describe how they can be composed into a
modular pipeline (Section III-A) to support the manual human
peer review.

A. Design Overview

Figure 1 shows the workflow of our pipeline, consisting of
three steps that address different parts of AE processes. The
steps can be combined as desired for the respective AE process,
or they can be used independently. Given this independence,
the process can be interrupted at any point, and the generated

reproducible
results

", artifacts

/ available
-
>

Figure 2. Mapping of concept vectors with a known concept “reproducible
results.” When measuring a new vector “artifacts available,” it is mapped via
a projection to the original vector to compute a score.

results can be used or discarded according to the use-case-
specific preferences (e.g., to exclude submissions with low
reproducibility scores from the review).

When using the pipeline in an AE, the process could look
as follows: First, the RATE stage checks how reproducible
the contribution appears based on the paper and the Readme
provided along with the source code. If the LLM detects that
reproducibility is likely impossible or very challenging, the
subsequent stages could, if desired, be canceled.

Second, the PREPARE stage attempts to set up the entire
research artifact in a fresh container environment to enable its
execution using the provided documentation. The LLM-based
agent used in this stage iteratively issues shell commands
to clone the repository, install dependencies, and compile
and execute code, while parsing the command’s outputs in
a feedback loop. Suppose that the execution fails and the LLM
fails to identify further corrective actions. In that case, the
resulting container and a detailed log of commands and errors
are archived for further evaluation by an expert, providing them
with first insights.

Third, the ASSESS stage focuses on rating the methodological
soundness of the submission: Based on the paper submission, it
discovers pitfalls that are common in the design and evaluation
of contributions in the field. The results could contain valuable
insights and can improve the feedback on methodology that
reviewers are returning eventually.

Finally, the generated results of all stages, including any
created runtime container (PREPARE stage), can be forwarded
to the AE reviewers to serve as supplemental material for their
“human” expert review. The COMPLEMENT stage is out of
scope for this paper, since our goal is to support, streamline,
and automate reviewers’ work using Al rather than to replace
their expert judgment.

B. RATE: Content-Based Reproducibility Ratings

Our toolkit’s first step, RATE, quantifies reproducibility as a
semantic direction in an LLM’s hidden-state space. We adapt
Yang et al.’s prior work [41] that extracts concept vectors from
LLMs’ internal states. By projecting a new text’s embedding
onto such a concept vector, they quantify how strongly that
text represents the respective concept. The authors demonstrate
that this approach yields consistent and valid measures for
concepts in social science research contexts. In our case, we
define the concept as reproducibility in cybersecurity research.
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Figure 3. The LLM agent gets access to the paper, the relevant source code
and data, as well as a Readme (if available). It then generates commands to
execute the code and runs them in a terminal. The outputs are sent back to
the agent to determine the next steps.

We begin by crafting two descriptive prompts p™ and p~
that define the opposite poles of our concept: one characterizing
that a paper is “easy to reproduce” and the other describing
that a paper is “difficult to reproduce.” These prompts instruct
the LLM to attend to textual cues such as the clarity of method-
ological descriptions, the presence and quality of installation
and execution instructions, as well as the completeness of
supplementary materials.

To extract a reproducibility concept vector, we randomly
select a set of n probing texts ¢;,0 <7 < n and feed each
twice into the LLM, once under p* and once under p~. We
extract textual cues from each run in the form of embedding
vectors from the final layer v; of the model, yielding pairs
(v, v;7). We then compute v¢ := |vj” — v;| for each probe
and apply Principal Component Analysis (PCA) to the collec-
tion {v¢ : 0 < i < n}. The first principal component serves as
our distilled concept vector v [41].

To evaluate the reproducibility of a new paper, we obtain its
hidden-state embedding v under a neutral prompt and project
it onto v by computing a dot-product s:=wv-0/||0|. The
resulting score s reflects how strongly the paper’s text aligns
with the distilled reproducibility concept vector constructed
from the training dataset. As the method relies only on hidden-
state vectors and PCA, it is independent of the specific LLM
architecture and can be applied to any model that exposes
final-layer embeddings.

C. PREPARE: Autonomously Setting up Code

In the PREPARE stage, we deploy an LLM-based agent
to automate execution environment setup and code execution
within a sandboxed environment, as we detail in Figure 3:
Our agent has full access to a shell and is given (i) the paper,
(ii) the artifact codebase, and (iii) existing documentation, such
as a Readme file. We then prompt it to emit shell commands,
which are executed sequentially in a container.

As a first step, we instruct the agent to download any relevant
code and datasets required to execute the artifact. After running
a command, we capture the output and send it back to the LLM,
enabling it to diagnose errors such as missing dependencies,
version mismatches, or compilation failures, and to generate
follow-up commands to resolve errors. Optionally, the agent

may be instructed to output natural-language explanations of
each step for human review.

This interactive feedback loop continues until the artifact runs
or the agent indicates no further corrective actions are possible.
By isolating each artifact in its own container, we ensure
(i) reproducibility by starting from a clean system instance,
(ii) resource control, such as Graphics Processing Unit (GPU)
access, (iii) clean teardown after the execution, and (iv) isolation
from other processes running on the host that may otherwise
interfere with the execution.

The final deliverable of this stage is either a runnable
container image ready for further analysis by an AE expert or a
structured error report that pinpoints issues the agent faced. In
the latter case, an expert may manually try to fix the detected
problems; nonetheless, the LLM agent already completed large
parts of trial-and-error setups beforehand.

D. ASSESS: Identifying Pitfalls in Contributions

While the previous stages focus on computational repro-
ducibility of the results of a research submission, this stage
evaluates the scientific rigor of a submission. Most importantly,
it may enhance the quality of reviews issued by AE experts
by supporting the detection of otherwise hard-to-notice flaws
in the study’s methodology and evaluation. We focus on Arp
et al.’s [35] taxonomy of ten common pitfalls in Al-driven
cybersecurity research; however, our approach is conceptually
independent of the specifically analyzed pitfalls. This stage
works similarly to the RATE stage by independently extracting
a concept vector from the underlying LLM for each of the
analyzed pitfalls.

For each of the m analyzed pitfalls, we construct positive
and negative prompts that characterize the opposite poles
of the respective concept (i.e., pitfall present or pitfall not
present). Using the procedure from the RATE stage, we derive
a unique concept vector for each pitfall individually using a
set of training papers. To assess a new paper, we compute
scores s;,0 < ¢ < m for each pitfall to obtain a feature
vector s := (8o, ..., Sm—1) Which we input into a supervised
classifier. The classifier outputs which pitfalls are most likely
present. The report highlights potential design or evaluation
flaws, providing reviewers with insights into the submission’s
potential methodological strengths and weaknesses.

IV. EVALUATION

To demonstrate the effectiveness of our toolkit on real paper
submissions, we measure the accuracy and reliability of our
individual steps on two expert-annotated datasets: We employ
Olszewski et al.’s [3] dataset of several hundred Al-based
cybersecurity papers to benchmark RATE and PREPARE, and
Arp et al.’s [35] dataset of 30 papers to assess ASSESS. We
begin by introducing the datasets and our experimental setup in
Sections IV-A and IV-B, respectively. We then present results
for the combined pipeline and its individual components in
Sections IV-C and IV-D.



A. Datasets

Reproducibility has no universally accepted quantitative
benchmark. To evaluate our pipeline, we, therefore, rely on two
expert-annotated datasets: first, Olszewski et al. [3] manually
assessed the reproducibility of nearly 750 Al-based security
research papers at top-tier conferences. Second, Arp et al. [35]
compiled a dataset of 30 papers where they manually record
the presence of ten common pitfalls found in studies in
cybersecurity. Next, we introduce them and our experimental
setup, including the configured LLMs.

1) OLSZEWSKI-STUDY: Olszewski et al. [3] invested
over eight person-years to manually check the computational
reproducibility of artifacts associated with papers on Al in
cybersecurity submitted to USENIX Security, ACM CCS, IEEE
S&P, and NDSS between 2013 and 2022. They assign discrete
reproducibility scores to each submission reflecting, e.g., the
effort required to acquire its code and data, to execute its
code, and to reproduce the correct results. Furthermore, they
document the presence of metadata such as links to code
repositories, hyperparameter settings, and dataset splitting.

Most notably, the authors find that out of 744 analyzed
submissions, only 298 include artifacts. Of those artifacts,
roughly 57% include a Readme file that provides instructions
for setting up and executing the corresponding code. The
authors only manage to execute 46% of the provided artifacts,
while only 20% of the tested code repositories produce the
same results as advertised in the original papers.

For our evaluation of RATE and PREPARE, we rely on code
repository availability, Readme presence, and manual execution
success as ground-truth labels. We only consider the subset
of papers where code is available for PREPARE and where,
additionally, a Readme is available for RATE.

2) ARP-STUDY: Arp et al. [35] manually reviewed 30
papers in cybersecurity submitted to top-tier conferences (2011-
2021) to identify ten recurring experimental and design pitfalls.
They annotate each paper for the presence or partial presence
of each pitfall and whether the authors discuss the flaw in their
papers. Notably, they find that sampling bias affects 90% of the
analyzed papers, 60% rely on an inappropriate threat model,
and that other issues, such as base-rate fallacy and lab-only
evaluation scenarios, affect a majority of papers. We rely on
the dataset by Arp et al. [35] to evaluate the ASSESS step.
While Arp et al. also track whether pitfalls are discussed by
authors in the text, we only focus on detecting their presence.

B. Experimental Setup

We now introduce the hardware, models, and procedures
used to implement and evaluate our pipeline and its individual
stages. All LLM-based components run with fixed prompts
and thresholds for binary decisions.

1) RATE and ASSESS: For both RATE and ASSESS, we
run a local instance of LLAMA-3.2-3B-INSTRUCT' on a
machine equipped with an NVIDIA H-100 Tensor-Core GPU.
A prompt template informs the LLM that it has access to

Thttps://www.llama.com/docs/model- cards-and- prompt-formats/llama3_2/

Table 1
COMPARISON OF THE OUTPUT OF THE REPRODUCIBILITY PIPELINE WITH
THE OLSZEWSKI-STUDY. THE PIPELINE CORRECTLY CLASSIFIES ALMOST
THREE-QUARTERS OF THE EXAMINED SUBMISSIONS, PROVIDING
EXECUTION ENVIRONMENTS FOR MORE THAN 27% OF ALL SUBMISSIONS
MARKED AS RUNNABLE IN THE GROUND-TRUTH.

Total OLSZEWSKI-STUDY
126 -
runs —runs
runs 7.14% 8.73% 15.87%
PIPELINE _ns 19.05%  65.08%  84.13%
26.19% 73.81%
Accuracy: 72.22%  Precision:  45.00%  Recall:  27.27%
Table 11

COMPARISON OF THE OUTPUT OF THE RATE STAGE WITH THE
OLSZEWSKI-STUDY. THE APPROACH CORRECTLY CLASSIFIES ALMOST ALL
SUBMISSIONS MARKED AS RUNNABLE IN THE GROUND-TRUTH.

Total OLSZEWSKI-STUDY
130 -
runs —runs
RATE runs  40.77% 54.62% 95.38%
—runs  2.31% 2.31% 4.62%
43.08% 56.92%
Accuracy:  43.08%  Precision:  42.74%  Recall: 94.64%

the full paper text and, in the case of RATE, a Readme
file associated with the submission’s code artifact. To derive
concept vectors, we fix a random sample of 12 papers for
RATE and 10 papers for ASSESS from the respective datasets
and run them through the LLM under the positive and negative
prompts. The remaining papers form the test set. We compute
cutoff scores by optimizing for recall for RATE and via logistic
regression for ASSESS.

2) PREPARE: Our LLM agent for PREPARE uses OpenAl’s
GPT-40-MINI> model and interacts with it through the re-
spective web API. Initial experiments with LLAMA-3.2-3B-
INSTRUCT reveal that many of the generated commands to
run the corresponding artifacts are invalid and that the model
quickly runs out of ideas to fix any occurring issues.

For each experiment, the agent spawns a Docker container
based on Nvidia’s cuda image, which in turn uses Ubuntu
22.04 as its base Linux distribution. We host the container on
a machine equipped with two Intel Xeon Platinum 8160 CPUs
and two NVIDIA Tesla V-100 GPUs. Setting up artifacts that
require graphical user interfaces (GUIs) or hardware emulations
is, unfortunately, not possible in our setup, leading to failed
executions of the corresponding code.

C. Reproducibility Pipeline Evaluation

Table I illustrates the overall performance of our pipeline,
i.e., the combination of the RATE and PREPARE stages. We
consider the intersection of papers from Olszewski et al.’s [3]
dataset in both stages individually. Overall, our system correctly

Zhttps://platform.openai.com/docs/models/o4-mini
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Table III
COMPARISON OF THE OUTPUT OF THE PREPARE STAGE WITH THE
OLSZEWSKI-STUDY. THE AGENT AUTOMATICALLY SETS UP READY-TO-USE
EXECUTION ENVIRONMENTS FOR ALMOST 29% OF ALL SUBMISSIONS
MARKED AS RUNNABLE IN THE GROUND-TRUTH.

Total OLSZEWSKI-STUDY
311 -
runs —runs
runs  7.40% 14.79%  22.19%
PREPARE  _ns  18.97%  58.84%  77.81%
26.37% 73.63%
Accuracy: 66.24%  Precision:  33.33%  Recall: 28.05%

assesses whether an artifact’s code can be executed without
major effort in more than 72% of cases.

Although only about 7% of all attempted artifacts are fully
containerized and executed by the pipeline, this performance
corresponds to provisioning runnable environments for roughly
28% of the papers that Olszewski et al. [3] manage to
execute out of the box, i.e., using only the instructions in
the corresponding Readme files. Only about 7% of papers are
misclassified as non-runnable when they, in fact, can run out of
the box according to Olszewski et al. [3]. These false negatives
are often induced by our Docker environment, which cannot
emulate special hardware, or by the agent, which cannot fix
them without external inputs, e.g., if the link to the sources
from the dataset leads to an informative website instead of a Git
repository. In any case, the agent provides a reason for failure
that human AE experts can use to try to fix the remaining
issues manually.

The true negative rate of the pipeline exceeds 85%, meaning

that our pipeline reliably filters out non-runnable submissions.

These numbers underline that the proposed pipeline can indeed
save reviewers from spending valuable time otherwise spent on
setting up artifacts using trial-and-error, which is a process that
is comparably easy to automate. By prepending the ASSESS
stage, submissions deemed unlikely to be reproducible can
even be discarded before entering the more costly PREPARE
stage, saving valuable computational resources. The results of
the pipeline are shared with an AE expert in the COMPLEMENT
stage, who can then decide on, e.g., whether to award a
reproducibility badge to the given submission.

D. Detailed Evaluation Results

In this section, we give a more detailed overview of the

classification results of the individual stages of our pipeline.

We highlight how RATE reliably forwards nearly all runnable
artifacts to the next stage, how PREPARE autonomously
provides numerous execution environments, and how ASSESS
detects methodological flaws with high accuracy.

1) RATE: This stage aims to find papers whose code is
likely not runnable and discard them early, before wasting
computational resources and time setting up the code. For the
evaluation of this stage, we consider only papers where the
code as well as a Readme file are available.

Table II compares this stage’s classification results to the
OLSZEWSKI-STUDY [3] dataset. The high recall of almost
95% indicates that almost all papers with runnable code are
selected to move to the next stage (the false negative rate is
just over 6%). In fact, fewer than 3% of all analyzed papers
are misclassified as not runnable.

This result makes the step ideal as a first stage for our
pipeline: if a paper is deemed not runnable, no computational
resources need to be spent to try and execute the respective
code. Instead, AE experts are given the result of the stage. If
they feel the results can be reproduced after all, the experts
can still manually feed the respective code and paper into the
PREPARE stage. Given the small number of false negatives,
only a few papers are discarded early in the pipeline and not
automatically examined for execution.

2) PREPARE: Unlike the previous stage, this stage’s goal
is to automatically set up execution environments to enable
experts to quickly run a paper’s code and manually assess
the validity of the reproduced results. We consider 311 papers
from the dataset since our agent does not explicitly require
the presence of a Readme file; instead, it can autonomously
analyze the code repository structure and, e.g., try to compile
and execute relevant files. All papers that have been evaluated
in the RATE stage are also analyzed in this stage.

In Table III, we summarize the results of the classification,
which show that the agent yields a moderately high accuracy
of more than 66%. Notably, this stage alone reliably eliminates
the need for experts to manually set up execution environments
for papers whose code is not runnable for almost 60% of
the analyzed papers. The false negatives are often induced by
limitations of our execution environment (cf. Section IV-B):
Even though our LLM agent can effectively execute terminal
commands, some artifacts require access to graphical desktop
environments to, e.g., run Internet browsers, which is out of
the scope of our experiments.

3) ASSESS: Given the relatively small size of the dataset
from the ARP-STUDY [35], i.e., 30 papers, we cannot analyze
the pitfalls on sampling bias (P1) and data snooping (P3). This
limitation is due to our training process requiring at least 5
papers per category “pitfall present” and “pitfall not present.”
For the remaining pitfalls, our evaluation yields promising
results. Except for the pitfall on biased parameters (P5), the
classifier has an accuracy between 90% and 100%. F} scores
are between 0.92 and 1, and F5 scores between 0.97 and 1,
indicating an accurate response given by our approach. For
(P5), our approach performs almost like a random predictor.
However, Arp et al. [35] classify most papers as “unclear from
text” for this category. We presume that a larger and more
representative dataset would fix this problem. The remaining
seven pitfalls can be accurately detected using only a small
human-annotated dataset. Overall, we conclude that ASSESS
is well-suited for detecting common known pitfalls in security-
related research papers on Al



V. DISCUSSION AND FUTURE WORK

Our results show that an LLM-driven toolkit can reliably
filter out non-runnable submissions, autonomously provide
execution environments for submitted artifacts, and accurately
flag common methodological pitfalls in cybersecurity research.
In the following, we discuss our findings in more detail while
also addressing limitations of our design, implementation, and
evaluation, and proposing directions for future research on
the topic. Further, we complement this discussion of findings
with a brief overview of lessons learned during our research
activities in Section V-C.

A. Individual Findings

Given the overall results of the toolkit, we reflect upon the
individual components’ strengths and limitations. Furthermore,
we outline targeted directions for future enhancements.

1) RATE: This stage already yields promising results despite
the LLLM used for this purpose not being fine-tuned to the
given task. Instead, the training data is given to the LLM as
a prompt. Future work may evaluate whether fine-tuning an
LLM improves the quantification of the concept of artifact
reproducibility within the model to generate more precise and
consistent concept vectors. However, this change would require
a large amount of training data, which is unavailable to us at
the time of writing. This training data could, for example, be
collected as part of a shadow AE conducted to evaluate the
pipeline further, as suggested in Section V-B.

2) PREPARE: While this stage automatically creates sand-
boxed execution environments for many paper artifacts, with
the currently used execution environment, we are still unable
to handle all submissions correctly. This situation is partly due
to technical limitations, e.g., the lack of a desktop environment
or specialized hardware required for some evaluations. The
former could be solved by adding GUI interaction support to
the agent, e.g., using UI-TARS [42]. The latter can be solved
by providing a more diverse hardware setup for the stage; this
improvement, however, exceeds the scope of this paper, as our
goal is to show the general feasibility of the approach.

3) ASSESS: Our evaluation of this stage shows that the
detection of pitfalls in cybersecurity papers on Al performs
very reliably. However, the small size of the evaluation dataset
poses limitations to our evaluation. We propose to re-evaluate
this stage on a more exhaustive dataset. The creation of such
a dataset is, however, infeasible within the scope of this paper.

B. General Findings and Future Directions

Our evaluation shows that our tools, when combined into
a pipeline, can provide significant support in the AE process
conducted at security conferences. It provides a first step into
automating this process by detecting submissions without repro-
ducible artifacts and autonomously preparing their execution
to enable AE experts to more quickly assess the validity of the
reproduced results. Hence, we provide means to significantly
boost the scalability of the process, particularly as we facilitate
the tedious task of setting up code environments for performing
the evaluations.

1) Open Questions: Despite the potential highlighted in
our evaluation, we identify several open questions: (i) Better
understanding in detail how “perfect” prompts could look
like for the different approaches in our toolkit. (ii) Further
comparing different underlying LLMs, as different models
may be better in finding and understanding certain concepts
or performing certain tasks, in particular, depending on the
model size. (iii) Assessing the security risks of applying our
pipeline in practice, e.g., regarding the execution of arbitrary
code in the artifacts, as well as better understanding the
implications for intellectual property fed to closed-source
commercial models. Concerning the last question, PREPARE
already provides execution environments that are sandboxed
in individual Docker containers. However, access to hardware
components such as GPUs or other specialized devices may
impose additional risks on the system.

2) Integration into Peer-Review: After improving the
techniques for automatically assessing artifact reproducibility
proposed in this paper, future work may integrate them directly
into the review process at cybersecurity conferences. Given
more general training data, the process could also be integrated
into conferences in other fields. Currently, artifact reproducibil-
ity checks are often only performed for accepted papers,
i.e., after the review process is completed [4]. Automated
reproducibility checks would allow checking a large number
of submissions even before issuing an acceptance. While some
authors might be concerned with participating in a potentially
biased or low-quality AEs, an Al-assisted pipeline may increase
their trust in the process and, in turn, improve their willingness
to participate. We believe that assessing the usability of the
proposed pipeline workflow in the form of shadow AE is a
good next step for assessing its maturity.

Integrating our tool into peer review requires addressing
manipulation risks, e.g., prompt injection. The attack surface
is limited in RATE and ASSESS, as outputs derive from
concept vectors extracted from the LLM’s hidden states rather
than direct generation from paper text. Reviewers read the
paper before or in parallel to the partially automated AE,
aiding detection of any injections. In PREPARE, injections may
occur in Readme files or code comments; however, sandboxed
execution and expert assessment of results render their impact
negligible. We expect such malicious acts to be rare due to
scientific integrity norms and penalized when discovered.

3) Future Evaluations: Finally, future work may expand
our research by applying the techniques to papers from different
fields. We limit our evaluation to papers in these domains due
to the availability of an exhaustive dataset. We believe the
approach easily generalizes to other topic areas as it does not
directly depend on the contents of the evaluated works. Most
importantly, we show that Al is a promising tool to employ
in AE with a great potential to complement the process to
improve its quality, scalability, and thus sustainability.

C. Lessons Learned

During the development of our pipeline, we noticed several
unexpected behaviors across interactive handling, execution,



verification, and contextual reasoning. For example, in the
PREPARE stage, the agent reports that it cannot engage with
an interactive editor such as nano for one experiment. While
it could have proposed an alternative non-interactive solution,
e.g., using sed, the LLM did not have this idea, revealing a
gap in its problem-solving repertoire. We suggest evaluating
this behavior with more powerful models to assess whether
this problem can be resolved.

Furthermore, in one experimental run during our implemen-
tation, the agent proposed to comment out an entire program to
make it run successfully—returning in an inaccurate assessment.
However, this change results in the program not performing any
computations or providing any outputs. We worked around this
issue by adapting the prompts given to the LLM, highlighting
the importance of carefully designed prompts and validation.

In the RATE stage, we notice that the LLM’s grasp of the
concept of reproducibility is less accurate than that of the
different pitfalls analyzed in the ASSESS stage. This result
may be induced by the training data of the utilized model:
Reproducibility is a niche topic, and today’s models are likely
not trained on much input that covers this concept.

Simultaneously, even on powerful hardware, local models
execute much more slowly than commercial models like
GPT-40-MINI, which are heavily optimized for mass use.
In particular, to protect the privacy and confidentiality of
submissions during the (confidential) AE process, we propose
that future work focuses on optimizing LLMs specifically for
the use case of artifact reproducibility assessment.

Overall, we have learned that LLMs constitute a powerful
tool that has the potential to substantially complement and
improve the AE process at scientific conferences. They can
be employed to automate tedious and repetitive tasks while
simultaneously streamlining the whole process to help provide
more consistent and high-quality feedback to authors.

VI. CONCLUSION

Ensuring the reproducibility of research artifacts in cyberse-
curity is crucial in science to validate the potential for further
use of given experimental and methodological results. It nar-
rows the gap between experiments and simulations, as well as
real-world deployments, since stakeholders can better assess the
suitability of the approaches for their systems. Currently, some
scientific conferences perform time-consuming manual artifact
evaluations to assess whether the contributions of the submitted
works are reproducible. We propose an LLM-based toolkit that
enhances the automation potential of otherwise manual and
time-consuming artifact assessments. Our evaluation shows
that, when combining the tools into a pipeline, a majority
of submissions without runnable artifacts are automatically
discarded. At the same time, execution environments are
generated for many submissions with runnable code. We
propose to integrate such a pipeline into the Artifact Evaluation
(AE) process of conferences to incentivize researchers to deliver
reproducible results. Furthermore, this change has potential to
unburden reviewers by automating a time-consuming part of the

review work, with the objective of improving the sustainability
of the AE process.
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